Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Commun ; 14(1): 4994, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591879

RESUMO

Simultaneous imaging of nine fluorescent proteins is demonstrated in a single acquisition using fluorescence lifetime imaging microscopy combined with pulsed interleaved excitation of three laser lines. Multicolor imaging employing genetically encodable fluorescent proteins permits spatio-temporal live cell imaging of multiple cues. Here, we show that multicolor lifetime imaging allows visualization of quadruple labelled human immunodeficiency viruses on host cells that in turn are also labelled with genetically encodable fluorescent proteins. This strategy permits to simultaneously visualize different sub-cellular organelles (mitochondria, cytoskeleton, and nucleus) during the process of virus entry with the potential of imaging up to nine different spectral channels in living cells.


Assuntos
HIV-1 , Humanos , HIV-1/genética , Transporte Biológico , Núcleo Celular , Corantes , Microscopia de Fluorescência
2.
Microscopy (Oxf) ; 72(3): 164-177, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36762762

RESUMO

Identifying initial events of mucosal entry of human immunodeficiency virus type-1 (HIV-1) in laboratory-based, physiologically relevant and high-throughput contexts may aid in designing effective strategies to block local transmission and spread of HIV-1. Several paradigms have been posited for how HIV-1 crosses mucosal barriers to establish infection based on two dimensional (2D) culture-based or animal-based models. Nevertheless, despite these models stemming from 2D culture and animal studies, monolayers of cells poorly replicate the complex niche that influences viral entry at mucosal surfaces, whereas animal models often inadequately reproduce human disease pathophysiology and are prohibitively expensive. Organoids, having never been directly utilized in HIV-1 transmission investigations, may offer a compromise between 2D culture and animal models as they provide a platform that mimics the biophysical and biochemical niche of mucosal tissues. Importantly, observation of events downstream of viral inoculation is potentially accessible to researchers via an array of microscopy techniques. Because of the potential insights organoids may provide in this context, we offer this review to highlight key physiological factors of HIV-1 transmission at common mucosal sites and a discussion to highlight how many of these factors can be recapitulated in organoids, their current limitations and what questions can initially be addressed, particularly using a selective inclusion of quantitative light microscopy techniques. Harnessing organoids for direct observation of HIV-1 entry at mucosal sites may uncover potential therapeutic targets which prevent the establishment of HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Animais , Humanos , HIV-1/fisiologia , Infecções por HIV/prevenção & controle , Mucosa , Microscopia
3.
Biol Cell ; 115(3): e2200082, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36440600

RESUMO

Single Virus Tracking (SVT) is a key technique to understand how individual viral particles evolve during the infection cycle. In the case of the human immunodeficiency virus (HIV-1), this technology, which can be employed using a simple and affordable wide-field microscope, has proven to be very useful in the first steps of infection, such as the kinetics of the fusion reaction or the point of fusion within live cells. Here, we describe how SVT in combination with other spectral imaging approaches is a powerful technique to illuminate crucial mechanistic aspects of the HIV-1 fusion reaction. We also stress the role of our laboratory in elucidating a few mechanistic aspects of retroviral fusion employing SVT such as: (i) the role of dynamin, (ii) how metabolism modulates membrane composition and cholesterol and its impact in fusion, (iii) the importance of envelope glycoprotein (Env) intra- and inter-molecular dynamics for neutralization, or (iv) the time-resolved fusion stoichiometry in three characteristic steps for the HIV-1 prefusion step. These observations constitute a good testimony of the complexity of retroviral fusion and show the strength of SVT when applied to live cells and combined with quantitative spectral approaches. Finally, we propose several crucial remaining questions around HIV-1 fusion and how the combined use of these technologies, always in live cells, will be able to shed light into the intricacies of arguably the most important step of the HIV-1 infection cycle.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Internalização do Vírus , Fusão de Membrana
4.
Nat Methods ; 19(12): 1524-1525, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357693
5.
Biochem Biophys Res Commun ; 626: 79-84, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35973378

RESUMO

CD44 mRNA contains nine consecutive cassette exons, v2 to v10. Upon alternative splicing, several isoforms are produced with different impacts on tumor biology. Here, we demonstrate the involvement of the RNA-binding proteins CELF1 and ELAVL1 in the control of CD44 splicing. We show by FRET-FLIM that these proteins directly interact in the nucleus. By combining RNAi-mediated depletion and exon array hybridization in HeLa cells, we observe that the exons v7 to v10 of CD44 are highly sensitive to CELF1 and ELAVL1 depletion. We confirm by RT-PCR that CELF1 and ELAVL1 together stimulate the inclusion of these exons in CD44 mRNA. Finally, we show in eight different tumor types that high expression of CELF1 and/or ELAVL1 is correlated with the inclusion of CD44 variable exons. These data point to functional interactions between CELF1 and ELAVL1 in the control of CD44 splicing in human cancers.


Assuntos
Processamento Alternativo , Receptores de Hialuronatos , Proteínas CELF1 , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Éxons/genética , Células HeLa , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Commun Biol ; 4(1): 1228, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707229

RESUMO

The HIV-1 envelope glycoprotein (Env) mediates viral entry into the host cell. Although the highly dynamic nature of Env intramolecular conformations has been shown with single molecule spectroscopy in vitro, the bona fide Env intra- and intermolecular mechanics when engaged with live T cells remains unknown. We used two photon fast fluorescence lifetime imaging detection of single-molecule Förster Resonance Energy Transfer occurring between fluorescent labels on HIV-1 Env on native virions. Our observations reveal Env dynamics at two levels: transitions between different intramolecular conformations and intermolecular interactions between Env within the viral membrane. Furthermore, we show that three broad neutralizing anti-Env antibodies directed to different epitopes restrict Env intramolecular dynamics and interactions between adjacent Env molecules when engaged with living T cells. Importantly, our results show that Env-Env interactions depend on efficient virus maturation, and that is disrupted upon binding of Env to CD4 or by neutralizing antibodies. Thus, this study illuminates how different intramolecular conformations and distribution of Env molecules mediate HIV-1 Env-T cell interactions in real time and therefore might control immune evasion.


Assuntos
HIV-1/fisiologia , Linfócitos T/virologia , Proteínas Virais/metabolismo , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Internalização do Vírus
7.
EMBO Mol Med ; 13(8): e13901, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34289240

RESUMO

HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+ /NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a "shock and kill effect" decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Regulação para Baixo , Glicólise , Humanos , Estresse Oxidativo , Proteômica , Ativação Viral , Latência Viral
8.
PLoS Pathog ; 17(5): e1009584, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33970974

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1008359.].

9.
Nat Chem Biol ; 17(1): 30-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778846

RESUMO

Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein-protein interactions by live-cell fluorescence microscopy.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes/química , Biologia Molecular/métodos , Imagem Óptica/métodos , Plasmídeos/química , Coloração e Rotulagem/métodos , Animais , Compostos de Benzilideno/química , Células COS , Chlorocebus aethiops , Clonagem Molecular , Cor , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Expressão Gênica , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Plasmídeos/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peixe-Zebra
10.
Trends Immunol ; 41(12): 1056-1059, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33148466

RESUMO

New approaches in single molecule spectroscopy and microscopy are able to resolve the spatial and temporal resolution of T cell receptor signaling in the context of immune responses to HIV-1 infection. These approaches need to be complemented with novel techniques that endogenously tag the protein or proteins of interest, yet avoid overexpression, to image protein dynamics under physiological conditions.


Assuntos
HIV-1 , Imunidade , Microscopia , Coloração e Rotulagem , HIV-1/imunologia , Humanos , Imunidade/imunologia , Microscopia/tendências , Proteínas/química , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Coloração e Rotulagem/métodos , Coloração e Rotulagem/tendências
11.
Elife ; 92020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33112230

RESUMO

The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline-rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was previously linked to paroxysmal neurological disorders in humans. Here, we show that glycine-305 and the homologous site in IFITM3, glycine-95, drive protein oligomerization from within a GxxxG motif. Mutation of glycine-95 (and to a lesser extent, glycine-91) disrupted IFITM3 oligomerization and reduced its antiviral activity against Influenza A virus. An oligomerization-defective variant was used to reveal that IFITM3 promotes membrane rigidity in a glycine-95-dependent and amphipathic helix-dependent manner. Furthermore, a compound which counteracts virus inhibition by IFITM3, Amphotericin B, prevented the IFITM3-mediated rigidification of membranes. Overall, these data suggest that IFITM3 oligomers inhibit virus-cell fusion by promoting membrane rigidity.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/imunologia , Motivos de Aminoácidos , Linhagem Celular , Células HEK293 , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/virologia , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Internalização do Vírus
12.
EMBO J ; 39(13): e102926, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32500924

RESUMO

Semaphorin ligands interact with plexin receptors to contribute to functions in the development of myriad tissues including neurite guidance and synaptic organisation within the nervous system. Cell-attached semaphorins interact in trans with plexins on opposing cells, but also in cis on the same cell. The interplay between trans and cis interactions is crucial for the regulated development of complex neural circuitry, but the underlying molecular mechanisms are uncharacterised. We have discovered a distinct mode of interaction through which the Drosophila semaphorin Sema1b and mouse Sema6A mediate binding in cis to their cognate plexin receptors. Our high-resolution structural, biophysical and in vitro analyses demonstrate that monomeric semaphorins can mediate a distinctive plexin binding mode. These findings suggest the interplay between monomeric vs dimeric states has a hereto unappreciated role in semaphorin biology, providing a mechanism by which Sema6s may balance cis and trans functionalities.


Assuntos
Moléculas de Adesão Celular/química , Proteínas de Drosophila/química , Proteínas do Tecido Nervoso/química , Semaforinas/química , Animais , Células COS , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Quaternária de Proteína , Semaforinas/genética , Semaforinas/metabolismo , Relação Estrutura-Atividade
13.
Structure ; 28(5): 507-515.e5, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32187531

RESUMO

The transmembrane protein OTK plays an essential role in plexin and Wnt signaling during Drosophila development. We have determined a crystal structure of the last three domains of the OTK ectodomain and found that OTK shows high conformational flexibility resulting from mobility at the interdomain interfaces. We failed to detect direct binding between Drosophila Plexin A (PlexA) and OTK, which was suggested previously. We found that, instead of PlexA, OTK directly binds semaphorin 1a. Our binding analyses further revealed that glycosaminoglycans, heparin and heparan sulfate, are ligands for OTK and thus may play a role in the Sema1a-PlexA axon guidance system.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Células CHO , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetulus , Cristalografia por Raios X , Proteínas de Drosophila/genética , Transferência Ressonante de Energia de Fluorescência , Glicosaminoglicanos/metabolismo , Células HEK293 , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Conformação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Receptores Proteína Tirosina Quinases/genética , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo
14.
PLoS Pathog ; 16(2): e1008359, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32084246

RESUMO

There has been resurgence in determining the role of host metabolism in viral infection yet deciphering how the metabolic state of single cells affects viral entry and fusion remains unknown. Here, we have developed a novel assay multiplexing genetically-encoded biosensors with single virus tracking (SVT) to evaluate the influence of global metabolic processes on the success rate of virus entry in single cells. We found that cells with a lower ATP:ADP ratio prior to virus addition were less permissive to virus fusion and infection. These results indicated a relationship between host metabolic state and the likelihood for virus-cell fusion to occur. SVT revealed that HIV-1 virions were arrested at hemifusion in glycolytically-inactive cells. Interestingly, cells acutely treated with glycolysis inhibitor 2-deoxyglucose (2-DG) become resistant to virus infection and also display less surface membrane cholesterol. Addition of cholesterol in these in glycolytically-inactive cells rescued the virus entry block at hemifusion and enabled completion of HIV-1 fusion. Further investigation with FRET-based membrane tension and membrane order reporters revealed a link between host cell glycolytic activity and host membrane order and tension. Indeed, cells treated with 2-DG possessed lower plasma membrane lipid order and higher tension values, respectively. Our novel imaging approach that combines lifetime imaging (FLIM) and SVT revealed not only changes in plasma membrane tension at the point of viral fusion, but also that HIV is less likely to enter cells at areas of higher membrane tension. We therefore have identified a connection between host cell glycolytic activity and membrane tension that influences HIV-1 fusion in real-time at the single-virus fusion level in live cells.


Assuntos
HIV-1/metabolismo , Fusão de Membrana/fisiologia , Proteínas do Envelope Viral/metabolismo , Linfócitos T CD4-Positivos , Fusão Celular , Membrana Celular/metabolismo , Glicólise/fisiologia , HIV-1/fisiologia , Humanos , Fusão de Membrana/genética , Cultura Primária de Células , Análise de Célula Única , Vírion/metabolismo , Internalização do Vírus
15.
Viruses ; 12(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059513

RESUMO

The first steps of human immunodeficiency virus (HIV) infection go through the engagement of HIV envelope (Env) with CD4 and coreceptors (CXCR4 or CCR5) to mediate viral membrane fusion between the virus and the host. New approaches are still needed to better define both the molecular mechanistic underpinnings of this process but also the point of fusion and its kinetics. Here, we have developed a new method able to detect and quantify HIV-1 fusion in single live cells. We present a new approach that employs fluorescence lifetime imaging microscopy (FLIM) to detect Förster resonance energy transfer (FRET) when using the ß-lactamase (BlaM) assay. This novel approach allows comparing different populations of single cells regardless the concentration of CCF2-AM FRET reporter in each cell, and more importantly, is able to determine the relative amount of viruses internalized per cell. We have applied this approach in both reporter TZM-bl cells and primary T cell lymphocytes.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , HIV-1/fisiologia , Imagem Óptica/métodos , Análise de Célula Única/métodos , Linfócitos T/virologia , Internalização do Vírus , Linhagem Celular , Células Cultivadas , Células HEK293 , Humanos , Cinética , Linfócitos T/fisiologia , beta-Lactamases/metabolismo
17.
Nucleic Acids Res ; 47(12): 6184-6194, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081027

RESUMO

Chromatin accessibility to protein factors is critical for genome activities. However, the dynamic properties of chromatin higher-order structures that regulate its accessibility are poorly understood. Here, we took advantage of the microenvironment sensitivity of the fluorescence lifetime of EGFP-H4 histone incorporated in chromatin to map in the nucleus of live cells the dynamics of chromatin condensation and its direct interaction with a tail acetylation recognition domain (the double bromodomain module of human TAFII250, dBD). We reveal chromatin condensation fluctuations supported by mechanisms fundamentally distinct from that of condensation. Fluctuations are spontaneous, yet their amplitudes are affected by their sub-nuclear localization and by distinct and competing mechanisms dependent on histone acetylation, ATP and both. Moreover, we show that accessibility of acetylated histone H4 to dBD is not restricted by chromatin condensation nor predicted by acetylation, rather, it is predicted by chromatin condensation fluctuations.


Assuntos
Cromatina/química , Acetilação , Trifosfato de Adenosina/metabolismo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/análise , Células HEK293 , Histonas/metabolismo , Humanos , Fatores Associados à Proteína de Ligação a TATA/metabolismo
18.
Nat Struct Mol Biol ; 26(6): 526, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31073171

RESUMO

In the version of this article initially published, the label above the top right plot in Fig. 3b (HXB2-Alexa Fluor 488) was incorrect. The correct label is 'HXB2-Alexa Fluor 405'. The error has been corrected in the HTML and PDF versions of the article.

19.
J Med Chem ; 62(6): 2928-2937, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30785281

RESUMO

Potent Ebolavirus (EBOV) inhibitors will help to curtail outbreaks such as that which occurred in 2014-16 in West Africa. EBOV has on its surface a single glycoprotein (GP) critical for viral entry and membrane fusion. Recent high-resolution complexes of EBOV GP with a variety of approved drugs revealed that binding to a common cavity prevented fusion of the virus and endosomal membranes, inhibiting virus infection. We performed docking experiments, screening a database of natural compounds to identify those likely to bind at this site. Using both inhibition assays of HIV-1-derived pseudovirus cell entry and structural analyses of the complexes of the compounds with GP, we show here that two of these compounds attach in the common binding cavity, out of eight tested. In both cases, two molecules bind in the cavity. The two compounds are chemically similar, but the tighter binder has an additional chlorine atom that forms good halogen bonds to the protein and achieves an IC50 of 50 nM, making it the most potent GP-binding EBOV inhibitor yet identified, validating our screening approach for the discovery of novel antiviral compounds.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Medicina Tradicional Chinesa , Antivirais/química , Antivirais/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Simulação por Computador , Cristalografia por Raios X , Descoberta de Drogas , Glicoproteínas/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes
20.
Nat Immunol ; 20(3): 350-361, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718914

RESUMO

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Assuntos
Agamaglobulinemia/imunologia , Linfócitos B/imunologia , Proteínas de Transporte de Cátions/imunologia , Zinco/imunologia , Agamaglobulinemia/genética , Agamaglobulinemia/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Pré-Escolar , Citosol/imunologia , Citosol/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Linhagem , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...